A deep learning classification scheme based on augmented-enhanced features to segment organs at risk on the optic region in brain cancer patients
نویسندگان
چکیده
Radiation therapy has emerged as one of the preferred techniques to treat brain cancer patients. During treatment, a very high dose of radiation is delivered to a very narrow area. Prescribed radiation therapy for brain cancer requires precisely defining the target treatment area, as well as delineating vital brain structures which must be spared from radiotoxicity. Nevertheless, delineation task is usually still manually performed, which is inefficient and operator-dependent. Several attempts of automatizing this process have reported, however, marginal results when analyzing organs in the optic region. In this work we present a deep learning classification scheme based on augmented-enhanced features to automatically segment organs at risk in the optic region -optic nerves, optic chiasm, pituitary gland and pituitary stalk. Fifteen MR images with various types of brain tumors were retrospectively collected to undergo manual and automatic segmentation. Mean Dice Similarity coefficients of 0.79, 0.83, 0.76 and 0.77, respectively, were reported in this study. Incorporation of proposed features yielded to improvements on the segmentation with respect to classical features. Compared with support vector machines, our method achieved better performance with less variation on the results, as well as a considerably reduction on the classification time. Performance of the proposed approach was also evaluated with respect to manual contours. In this case, results obtained from the automatic contours mostly lie on the variability of the observers. Additionally, in cases where our method was under performing with respect to manual raters, statistical analysis showed that there were not significant differences between them. These results suggest therefore that the proposed system is more accurate than other presented approaches, up to date, to segment these structures. The speed, reproducibility, and robustness of the process make the proposed deep learning-based classification system a valuable tool for assisting in the delineation task of small OARs in brain cancer.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملClassification of Brain Tumor by Combination of Pre-Trained VGG16 CNN
In recent years, brain tumors become the leading cause of death in the world. Detection and rapid classification of this tumor are very important and may indicate the likely diagnosis and treatment strategy. In this paper, we propose deep learning techniques based on the combinations of pre-trained VGG-16 CNNs to classify three types of brain tumors (i.e., meningioma, glioma, and pituitary tumo...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.10480 شماره
صفحات -
تاریخ انتشار 2017